Remote Sensing Data Processing Process Scheduling Based on Reinforcement Learning in Cloud Environment

نویسندگان

چکیده

Task scheduling plays a crucial role in cloud computing and is key factor determining performance. To solve the task problem for remote sensing data processing computing, this paper proposes workflow algorithm---Workflow Scheduling Algorithm based on Deep Reinforcement Learning (WDRL). The process modeling transformed into directed acyclic graph problem. Then, algorithm designed by establishing Markov decision model adopting fitness calculation method. Finally, combine advantages of reinforcement learning deep neural networks to minimize make-time processes from experience. experiment development CloudSim Python compares change completion time data. results show that compared with several traditional meta-heuristic algorithms, WDRL can effectively achieve goal optimizing efficiency.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Replication-Based Scheduling in Cloud Computing Environment

Abstract— High-performance computing and vast storage are two key factors required for executing data-intensive applications. In comparison with traditional distributed systems like data grid, cloud computing provides these factors in a more affordable, scalable and elastic platform. Furthermore, accessing data files is critical for performing such applications. Sometimes accessing data becomes...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Rapid processing of remote sensing images based on cloud computing

The rapid processing of remote sensing (RS) images is essential in many large-scale real-time monitoring, such as meteorological monitoring and natural disaster warning. However, the computation cost of RS is often expensive, traditional RS processing methods can not satisfy the time requirement of dynamic monitoring. Fortunately, cloud computing not only provides an effective service for date ...

متن کامل

A New Job Scheduling in Data Grid Environment Based on Data and Computational Resource Availability

Data Grid is an infrastructure that controls huge amount of data files, and provides intensive computational resources across geographically distributed collaboration. The heterogeneity and geographic dispersion of grid resources and applications place some complex problems such as job scheduling. Most existing scheduling algorithms in Grids only focus on one kind of Grid jobs which can be data...

متن کامل

An Efficient Resource Allocation for Processing Healthcare Data in the Cloud Computing Environment

Nowadays, processing large-media healthcare data in the cloud has become an effective way of satisfying the medical userschr('39') QoS (quality of service) demands. Providing healthcare for the community is a complex activity that relies heavily on information processing. Such processing can be very costly for organizations. However, processing healthcare data in cloud has become an effective s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cmes-computer Modeling in Engineering & Sciences

سال: 2023

ISSN: ['1526-1492', '1526-1506']

DOI: https://doi.org/10.32604/cmes.2023.024871